赌博网-赌球网址-体育

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

真人百家乐官网ea平台| 百家乐官网趋势方向| 波音百家乐现金网| 哪个百家乐官网投注比较好| 百家乐路技巧| 大发888老虎机官方| 赌神网百家乐官网的玩法技巧和规则| 大发888 dafa888 gzsums| 百家乐官网全部规| 顶级赌场下载| 百家乐下载免费软件| 博久网| 博彩百家乐官网字谜总汇| 澳门顶级赌场金鹰娱乐| 百家乐的庄闲概率| 百家乐官网二人视频麻将| 百家乐押注最高是多少| 百家乐官网策略大全| 博威娱乐在线| 大世界百家乐的玩法技巧和规则| 全讯网娱乐353788| 24山方位吉凶| 永利百家乐官网现金网| 大发888娱乐游戏注册| 百家乐官网策略介绍| 百家乐官网分析绿色版| 大发888手机版亚洲城| 博E百百家乐现金网| 中国百家乐官网技巧软件| 财神真人娱乐城| 全讯网.com| 百家乐韩泰阁| 自贡百家乐官网赌场娱乐网规则| 修文县| 大发888娱乐软件| 澳门百家乐才能| 百家乐官网咋样赢钱| 百家乐官网龙虎台布作弊技巧| 足球博彩通| bet365娱乐城注册| 大发888冲值|