赌博网-赌球网址-体育

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网博娱乐网赌百家乐官网的玩法技巧和规则 | 视频百家乐官网代理| 新手百家乐指点迷津| 涟源市| 百家乐赌博在线娱乐| 百家乐官网最新的投注方法 | 百家乐官网最常见的路子| 百家乐怎么才能包赢| 威尼斯人娱乐场官网| 百家乐官网庄闲对冲| 大发888娱乐场是真是假| 正品百家乐官网玩法| 百家乐官网平台租用| 百盛百家乐的玩法技巧和规则 | 广州太阳城大酒店| 澳门百家乐官网如何算| 百家乐真人游戏赌场娱乐网规则 | 百家乐韩泰阁| 百家乐官网园36bol在线| 威尼斯人娱乐城开户| 澳门百家乐官网博客| 大发888在线娱乐二十一点| 捷豹百家乐官网的玩法技巧和规则| 六合彩下注| 大发888娱乐场存款| 网上百家乐是叫九五至尊么| 澳门百家乐官网| 新宝百家乐官网网址| 大发888官网df888| 澳门百家乐庄闲和| 聚众玩百家乐官网的玩法技巧和规则 | 大发888游戏平台 df888ylcxz46| 永利高百家乐现金网| 克拉克百家乐官网下载| 百乐坊娱乐城噢门| sz新全讯网xb112| 百家乐官网缩水| 豪华百家乐官网桌子厂家 | 百家乐赌博经历| 索雷尔百家乐官网的玩法技巧和规则 | KTV百家乐官网的玩法技巧和规则|